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Introduction

Translational Neuroscience

Translational Clinical

Neuroscience | Neuroscience | Applications

Goal: establishment of brain - behavior association



Introduction

Early: Traditional Brain Mapping

Traditional Brain Mapping Foundation I: Lesion Studies

X 10cases => Amnesia

Functional measures

Scoville & Milner (1957)

Foundation II: Theory of Modularity | -

\f%

“Faculty Psychology ... the mental causation
of behavior typically involves the simultaneous

activity of a variety of distinct psychological
mechanisms”

Amyg'do;‘la Reacﬂ:.I:txctgsFear‘fuoz and Ang:rD; FOdor (1 983)

Swartz et al. (2015)



Introduction

Problems of Traditional Brain Mapping

1. Central problem: the main goal of traditional brain mapping!

(= to understand localized brain function)

2. Avoxel =~5.5 million neurons

3. Reverse Inference

P(COG|ACT) != P(ACT|COG)

P(COGx|ACTy)

PACTZ|COGx)P(COGYy)

Experimental manipulation

(Unobservable) processes

| P(ACTICOG) |

Task,

P(COG|TASK) l

Cognitive process,

(Observable) measures

S

fMRI activation

Behavioral data

Poldrack (2006)



Introduction

Now: Predictive Modeling

~

Model development Y Prospective testing \
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e Direction of Inference
Integrate brain regions and make a single best
guess

e Cross-validation

e Information from multiple spatial scales

Assumption: “many features of neurologic and psychiatric
disorders are encoded in distributed neural systems”



Body I: State of the Field

Current State of Clinical Predictive Modeling
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Body Il: Prediction Studies

1) Risk Assessment, Conversion Prediction and Early Detection

:who is at risk?
Goals :who will convert into a disease state?

:who is at the early stage of a disease?
SPARE-AD 1,

Model I: Spatial Pattern of Abnormality for Recognition of Early AD (SPARE-AD) More AD-like

Structural MRI =  Regional Volumetric Maps = High-Dimensional Classification =  SPARE-AD
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Figure 4 Rate of SPARE-AD change as a function of average Figure 5 SPARE-AD annual change rates plotted against age
age during follow-up period, for the 109 CN individuals. for all MCI individuals.

Davatzikos et al. (2009)



Body Il: Prediction Studies

Expression of pattern related to
progressive supranuclear palsy

2) Differential Diagnosis* & Subtyping?

Study I: Parkinson’s disease’

61

N
\

b

3D plot of FDG-PET pattern expression

Expression of pattern related to
idiopathic Parkinson’s disease

O Clinical idiopathic Parkinson'’s disease
A Clinical multiple system atrophy
0 Clinical progressive supranuclear palsy

2

Expression of pattern related
to multiple system atrophy

All patients
Idiopathic Parkinson’s disease
Sensitivity 84% (81/96)
Specificity 97% (69/71)
Positive predictive value 98% (81/83)
Negative predictive value 82% (69/84)

Atypical parkinsonian syndrome
Sensitivity

Specificity

Positive predictive value
Negative predictive value
Multiple system atrophy
Sensitivity

Specificity

Positive predictive value
Negative predictive value
Progressive supranuclear palsy
Sensitivity

Specificity

Positive predictive value

Negative predictive value

Data are % (calculation).

Tang et al. (2010)
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Body Il: Prediction Studies

3) Predicting Treatment Outcome

Goal To customize treatment based on brain measures (= precision medicine)

Research

e Mostly focused on depression and anxiety disorders
e Mostly predicted cognitive behavioral therapy (CBT) response

Study I: Social Anxiety Disorders with CBT

Functional MRI

Angry face

Neutral face

Contrast Activation (% of Signal Change)

LSAS: Liebowitz Social Anxiety Scale
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Body llI: Evaluation of Predictive Modeling

Four Characteristics of Desirable Model

1 Diagnostic Value

2 Neuroscientific Validity

3 Deployability and Scalability

4 Generalizability



Body llI: Evaluation of Predictive Modeling

Predicted class

Negative Positive

Measures

Diagnostic Value

True class

Positive

True
positive
P

False
negative
FN

Sensitivity

-
TP+FN

Negative

Measures

False
positive
FP

Positive predictive
value (PPV)
_IP_
TP+FP

True
negative
TN

Negative predictive
value (NPV)
N
FN+TN

Specificity

N
FP+TN

Accuracy

TP+TN
TP+FP+FN+TN

Vihinen (2012)

Sensitivity

Specificity

How robustly the measure responds when

the outcome is present

Whether the measure responds only in the

presence of the target outcome

C.f. Predictive Value and Base Rate (Prevalence)

A

PPV

P (Chronic pain | Positive Biomarker) | ~

SENSITIVITY PREVALENCE
P (Positive Biomarker | Chronic pain) | X P (Chronic Pain)

PROBABILITY OF POSITIVE BIOMARKER
P (Positive Biomarker)

NPV
P (No pain | Negative Biomarker)

SPECIFICITY 1 - PREVALENCE
P (Negative Biomarker | No pain) X P (No pain)

PROBABILITY OF NEGATIVE BIOMARKER
P (Negative Biomarker)

Robinson et al. (2016)



Body llI: Evaluation of Predictive Modeling

Diagnostic Value - Accuracy Issues

1. Biasesin Accuracy 2. Variability in Accuracy based on Sample Size

Accuracy and sample size
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Body llI: Evaluation of Predictive Modeling

Why Accuracy Bias, and How to Reduce it

Accuracy is inflated because of: Solutions:
1. Dependence of test datasets =4 Testing on an independent sample
2. Overfitting =4 Testing only one model
Currently in the field... Prospective testing  gample size
g
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Body llI: Evaluation of Predictive Modeling

Neuroscientific Validity

Plausibility Interpretability
e Machine Learning algorithms
e fMRIsignalinthe ventricles? — too many features
— implausible — LASSO /ridge-regularization
Systematic Approach

1. Summarize and visualize the model in human-readable way
Evaluate the neuroscientific plausibility of the predictive weights
3.  Examine confounding factors

N



Body llI: Evaluation of Predictive Modeling

Deployability and Scalability, Generalizability

e Deployability and Scalability:
- Easily applicable to new individuals and shareable across labs

- Standardized data formats and software (= named models like SPARE-AD)

e Generalizability:
- To new individuals
- Across labs, scanners, and minor variants in testing conditions

- Similar results to other outcomes with the same construct (e.g. mathability)

Ecologically valid datasets  : have samples that are representative of the broader population

Big data approaches : test specificity over multiple alternatives (open-process)



Conclusion: Future Directions

Shareable Research Products

Levels of evidence
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Development validation
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Conclusion: Future Directions

Process-based predictive models

a Direct prediction approach b Component process approach c An example: Neurologic Pain Signature

Clinical and/or functional outcomes
Clinical outcomes

(diagnostic categories)
Ch o o ’?/
Brain biomarkers

+
Predictive
weights

Woo et al. (2017)



Conclusion: Future Directions

Process-based predictive models

Research Domain Criteria (RDoC) Study I: Neurologic Pain Signature

B Cross-Validated Prediction of Pain
A% EN\I\RONMENT 8 iz -

Negative Valence
Positive Valence
Cognitive Systems

DOMAINS

Systems for Social Processes
Arousal/Regulatory Systems
Sensorimotor Systems

Predicted Pain Report

https:/www.nimh.nih.gov/research/research-funded-by-ni

mh/rdoc/constructs/rdoc-matrix.shtml

Pain Report


https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/constructs/rdoc-matrix.shtml
https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/constructs/rdoc-matrix.shtml

Conclusion: Future Directions

Process-based predictive models

Study II: Clinical Pain Components
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Conclusion: Summary

Box 2 Recommendations for future efforts

Model development:

¢ |ncrease focus on classification and prediction problems that cannot be easily achieved with existing clinical measures. Problems include early
detection, prognosis, differential diagnosis, patient stratification and predicting treatment response (Fig. 2c).

¢ |ncrease focus on process-based predictive models and intermediate basic processes that may map more closely onto patterns of brain activity
than clinical categories themselves and may reveal patterns of dysfunction and neuropathology across disorders (Fig. 4b).

e Homogeneous samples can be used for discovery, but the models should eventually be tested on more ecologically valid (i.e., more
heterogeneous) samples.

Model validation:

e Plan proper prospective tests with independent test data from the early stages of study design and analysis planning (Fig. 2e).

e Test model specificity over multiple alternative conditions (for example, differential diagnoses, multiple cognitive and affective processes).
e Demonstrate models’ neuroscientific validity (see “A systematic approach to improving neuroscientific validity”).

Cumulative science:

¢ Treat brain models as sharable research products that can be tested and annotated across different laboratories.

e Name newly developed predictive models to facilitate subsequent model-sharing and prospective testing (Table 2).
e |dentify promising models and test them in increasingly broad and rigorous ways.

Big data approaches:

¢ |Include multiple disease groups and task conditions in large-scale data initiatives. Important problems such as patient stratification and
specificity testing can only be achieved with data that cut across multiple conditions and diagnoses.

e Establish quality-control standards and abide by established ones.

e When developing models on multisite data, carefully consider issues of variables that may be unbalanced across study sites (for example,
patient/control ratios and measurement variances), and thus create confounds. Where such confounds are unavoidable, consider a strategy
of developing models on one sample and then testing generalizability to other samples, rather than pooling data across sites.



“This new way of thinking about neuroimaging results integrates ideas from machine learning, big
data, reproducible research and open science to bring translational goals within reach.”
Woo et al. (2017)

Thank you!
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