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Introduction



Neuroimaging

Neuroimaing is to measure the structure and function of the brain.
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Neuroimaging Techniques
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fMRI*

● Uses magnetic resonance
● Most widely used
● High costs
● Weak at head motion 

fNIRS*

● Uses near-infrared light
● Cheap and portable
● Strong at head motion
● Low spatial resolution

Magnetom; Siemens, Germany NIRSIT; OBELAB, Korea

*fMRI: functional magnetic resonance imaging *fNIRS: functional near-infrared spectroscopy



Neuroimaging Literature 
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“fMRI-based biomarkers”

(2011)

(2006)

(2016)



Previous literature has focused on 1) simultaneously recording and 2) correlation. 

(2006)

Needs for Finding a Mapping Function
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Find a mapping function

Obtain fNIRS and fMRI measures 
separately 

Research Needs

Enable a direct mapping from 
fNIRS to fMRI measures 

(2017)



Objectives

8

To examine if different scanning environment impacts task performance

To find a mapping function between independently obtained fNIRS and 
fMRI measures

To utilize data augmentation and machine learning to build such model

To improve the plausibility of fNIRS as a potential surrogate of fMRI 
markers
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Methods



Method I - Participants, Design and Tasks
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Participants
• 50 (female: 21; male: 29)

• Age: 23.4 (mean)

• Data exclusion criteria
• Head motions
• Scanner issues
• Poor performance

Experimental Design

1-3 
days

Session 1

fNIRS

Session 2

fMRI

Tasks
Probabilistic Reversal Learning (PRL) 
(Hampton et al., 2006)

• Decision-making in a volatile environment

• Measure of interest: prediction error

Stop Signal Task (SST) (Li et al., 2006)

• Response inhibition, an ability to inhibit action

• Measure of interest: successful stop



fNIRS

NIRSIT; 
OBELAB, Korea

Method II – fMRI & fNIRS
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fMRI

Magnetom Trio; 
Siemens, Germany

• Records the BOLD* signal

• 3T scanner

• Whole brain activity

• Records HbO*, HbR* and 

HbT* signals (48 channels)

• Prefrontal brain activity

GLM*

GLM

Successful Response InhibitionSST

Right Inferior Frontal Gyrus

*BOLD: blood-oxygen-level-dependent 

*HbO: oxygenated hemoglobin
*HbR: deoxygenated hemoglobin
*HbT: total hemoglobin

*GLM: general 
linear modeling



Method III - Data Augmentation

Data augmentation to generate synthetic data based on the true data 
(Nagasawa et al., 2020; Safdar et al., 2020). 
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Method IV - Leave-one-out cross-validation

Leave-one-out cross-validation with the augmented and true dataset
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Prediction Pipeline

Prediction with Data Augmentation and Machine Learning Models
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*

Demographics
(age, sex)

fNIRS
(48 channels)

fMRI
(clusters)

Data 
Augmentation

Prediction 
Models

Linear regression
Lasso regression
Ridge regression

SVR

Train & Test

Train: 
Augmented data

Test: 
True data

Leave-one-out 
cross-validation

Independent 
Variables

Dependent 
Variables

*SVR: support vector regression (with radial basis function; RBF)
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Results



Result I – Behavioral Consistency
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Scanning environment did not significantly impact task performance.1

Stop Signal Reaction TimeSST Negative Learning RatePRL



2 Lasso regression with the HbR signals outperformed other models.

Result II – SST Model Comparison
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Three activated areas related to response inhibition in fMRI were predicted
by the fNIRS pattern.
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Result III – SST Prediction
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Right Inferior Frontal Gyrus
(Li et al., 2006)

z = 7

Supplementary Motor Area

y = 11
z = 7

Left Inferior Frontal Gyrus
(Li et al., 2006)

Model: Lasso regression with the HbR fNIRS signal



One activated area related to prediction error in fMRI was predicted by the
fNIRS pattern.
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Result IV – PRL Model Comparison & Prediction
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Lasso Reg.

Linear Reg.

Ridge Reg.

SVR (RBF)
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Mean Squared Error of the Inferior Parietal Lobule Prediction Inferior Parietal Lobule (Jane et al., 2013)

z = 4

Model: SVR (RBF) with the HbT fNIRS signal
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Summary



Summary
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Scanning environment did not significantly alter task performance.

fNIRS could predict activation reflecting prediction error during learning. 

fNIRS could predict fMRI markers of response inhibition. 

Our novel prediction pipeline including data augmentation and machine 
learning models mapped fNIRS into fMRI activation well. 
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Thank you for your listening!


